
CRUSH: Controlled, Scalable, Decentralized Placement of Replicated Data

Sage A. Weil Scott A. Brandt Ethan L. Miller Carlos Maltzahn
Storage Systems Research Center
University of California, Santa Cruz

{sage, scott, elm, carlosm}@cs.ucsc.edu

Abstract

Emerging large-scale distributed storage systems are faced
with the task of distributing petabytes of data among tens
or hundreds of thousands of storage devices. Such systems
must evenly distribute data and workload to efficiently uti-
lize available resources and maximize system performance,
while facilitating system growth and managing hardware
failures. We have developed CRUSH, a scalable pseudo-
random data distribution function designed for distributed
object-based storage systems that efficiently maps data ob-
jects to storage devices without relying on a central direc-
tory. Because large systems are inherently dynamic, CRUSH
is designed to facilitate the addition and removal of storage
while minimizing unnecessary data movement. The algo-
rithm accommodates a wide variety of data replication and
reliability mechanisms and distributes data in terms of user-
defined policies that enforce separation of replicas across
failure domains.

1 Introduction

Object-based storage is an emerging architecture that
promises improved manageability, scalability, and perfor-
mance [Azagury et al. 2003]. Unlike conventional block-
based hard drives, object-based storage devices (OSDs) man-
age disk block allocation internally, exposing an interface
that allows others to read and write to variably-sized, named
objects. In such a system, each file’s data is typically
striped across a relatively small number of named objects
distributed throughout the storage cluster. Objects are repli-
cated across multiple devices (or employ some other data
redundancy scheme) in order to protect against data loss in
the presence of failures. Object-based storage systems sim-
plify data layout by replacing large block lists with small
object lists and distributing the low-level block allocation
problem. Although this vastly improves scalability by re-
ducing file allocation metadata and complexity, the funda-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC2006 November 2006, Tampa, Florida, USA
0-7695-2700-0/06 $20.00 2006 IEEE

mental task of distributing data among thousands of storage
devices—typically with varying capacities and performance
characteristics—remains.
Most systems simply write new data to underutilized de-

vices. The fundamental problem with this approach is that
data is rarely, if ever, moved once it is written. Even a per-
fect distribution will become imbalanced when the storage
system is expanded, because new disks either sit empty or
contain only new data. Either old or new disks may be busy,
depending on the system workload, but only the rarest of
conditions will utilize both equally to take full advantage of
available resources.
A robust solution is to distribute all data in a system ran-

domly among available storage devices. This leads to a prob-
abilistically balanced distribution and uniformly mixes old
and new data together. When new storage is added, a random
sample of existing data is migrated onto new storage devices
to restore balance. This approach has the critical advantage
that, on average, all devices will be similarly loaded, allow-
ing the system to perform well under any potential work-
load [Santos et al. 2000]. Furthermore, in a large storage
system, a single large file will be randomly distributed across
a large set of available devices, providing a high level of par-
allelism and aggregate bandwidth. However, simple hash-
based distribution fails to cope with changes in the number of
devices, incurring a massive reshuffling of data. Further, ex-
isting randomized distribution schemes that decluster repli-
cation by spreading each disk’s replicas across many other
devices suffer from a high probability of data loss from co-
incident device failures.
We have developed CRUSH (Controlled Replication Un-

der Scalable Hashing), a pseudo-random data distribution
algorithm that efficiently and robustly distributes object
replicas across a heterogeneous, structured storage cluster.
CRUSH is implemented as a pseudo-random, deterministic
function that maps an input value, typically an object or ob-
ject group identifier, to a list of devices on which to store
object replicas. This differs from conventional approaches
in that data placement does not rely on any sort of per-file
or per-object directory—CRUSH needs only a compact, hi-
erarchical description of the devices comprising the storage
cluster and knowledge of the replica placement policy. This
approach has two key advantages: first, it is completely dis-
tributed such that any party in a large system can indepen-
dently calculate the location of any object; and second, what

little metadata is required is mostly static, changing only
when devices are added or removed.
CRUSH is designed to optimally distribute data to uti-

lize available resources, efficiently reorganize data when
storage devices are added or removed, and enforce flexible
constraints on object replica placement that maximize data
safety in the presence of coincident or correlated hardware
failures. A wide variety of data safety mechanisms are sup-
ported, including n-way replication (mirroring), RAID parity
schemes or other forms of erasure coding, and hybrid ap-
proaches (e. g., RAID-10). These features make CRUSH
ideally suited for managing object distribution in extremely
large (multi-petabyte) storage systems where scalability, per-
formance, and reliability are critically important.

2 Related Work

Object-based storage has recently garnered significant inter-
est as a mechanism for improving the scalability of stor-
age systems. A number of research and production file
systems have adopted an object-based approach, includ-
ing the seminal NASD file system [Gobioff et al. 1997],
the Panasas file system [Nagle et al. 2004], Lustre [Braam
2004], and others [Rodeh and Teperman 2003; Ghemawat
et al. 2003]. Other block-based distributed file systems like
GPFS [Schmuck and Haskin 2002] and Federated Array of
Bricks (FAB) [Saito et al. 2004] face a similar data distribu-
tion challenge. In these systems a semi-random or heuristic-
based approach is used to allocate new data to storage de-
vices with available capacity, but data is rarely relocated
to maintain a balanced distribution over time. More im-
portantly, all of these systems locate data via some sort of
metadata directory, while CRUSH relies instead on a com-
pact cluster description and deterministic mapping function.
This distinction is most significant when writing data, as sys-
tems utilizing CRUSH can calculate any new data’s stor-
age target without consulting a central allocator. The Sor-
rento [Tang et al. 2004] storage system’s use of consistent
hashing [Karger et al. 1997]most closely resembles CRUSH,
but lacks support for controlled weighting of devices, a well-
balanced distribution of data, and failure domains for im-
proving data safety.
Although the data migration problem has been studied ex-

tensively in the context of systems with explicit allocation
maps [Anderson et al. 2001; Anderson et al. 2002], such ap-
proaches have heavy metadata requirements that functional
approaches like CRUSH avoid. Choy, et al. [1996] describe
algorithms for distributing data over disks which move an
optimal number of objects as disks are added, but do not
support weighting, replication, or disk removal. Brinkmann,
et al. [2000] use hash functions to distribute data to a het-
erogeneous but static cluster. SCADDAR [Goel et al. 2002]
addresses the addition and removal of storage, but only sup-
ports a constrained subset of replication strategies. None of
these approaches include CRUSH’s flexibility or failure do-

mains for improved reliability.
CRUSH most closely resembles the RUSH [Honicky and

Miller 2004] family of algorithms upon which it is based.
RUSH remains the only existing set of algorithms in the lit-
erature that utilizes a mapping function in place of explicit
metadata and supports the efficient addition and removal of
weighted devices. Despite these basic properties, a number
of issues make RUSH an insufficient solution in practice.
CRUSH fully generalizes the useful elements of RUSHP and
RUSHT while resolving previously unaddressed reliability
and replication issues, and offering improved performance
and flexibility.

3 The CRUSH algorithm

The CRUSH algorithm distributes data objects among stor-
age devices according to a per-device weight value, approx-
imating a uniform probability distribution. The distribution
is controlled by a hierarchical cluster map representing the
available storage resources and composed of the logical el-
ements from which it is built. For example, one might de-
scribe a large installation in terms of rows of server cabinets,
cabinets filled with disk shelves, and shelves filled with stor-
age devices. The data distribution policy is defined in terms
of placement rules that specify how many replica targets are
chosen from the cluster and what restrictions are imposed
on replica placement. For example, one might specify that
three mirrored replicas are to be placed on devices in dif-
ferent physical cabinets so that they do not share the same
electrical circuit.
Given a single integer input value x, CRUSH will output

an ordered list R⃗ of n distinct storage targets. CRUSH uti-
lizes a strong multi-input integer hash function whose inputs
include x, making the mapping completely deterministic and
independently calculable using only the cluster map, place-
ment rules, and x. The distribution is pseudo-random in that
there is no apparent correlation between the resulting output
from similar inputs or in the items stored on any storage de-
vice. We say that CRUSH generates a declustered distribu-
tion of replicas in that the set of devices sharing replicas for
one item also appears to be independent of all other items.

3.1 Hierarchical Cluster Map

The cluster map is composed of devices and buckets, both of
which have numerical identifiers and weight values associ-
ated with them. Buckets can contain any number of devices
or other buckets, allowing them to form interior nodes in a
storage hierarchy in which devices are always at the leaves.
Storage devices are assigned weights by the administrator to
control the relative amount of data they are responsible for
storing. Although a large system will likely contain devices
with a variety of capacity and performance characteristics,
randomized data distributions statistically correlate device

tomsun

tomsun

tomsun

tomsun

tomsun

tomsun

utilization with workload, such that device load is on aver-
age proportional to the amount of data stored. This results in
a one-dimensional placement metric, weight, which should
be derived from the device’s capabilities. Bucket weights are
defined as the sum of the weights of the items they contain.
Buckets can be composed arbitrarily to construct a hierar-

chy representing available storage. For example, one might
create a cluster map with “shelf” buckets at the lowest level
to represent sets of identical devices as they are installed,
and then combine shelves into “cabinet” buckets to group
together shelves that are installed in the same rack. Cabinets
might be further grouped into “row” or “room” buckets for a
large system. Data is placed in the hierarchy by recursively
selecting nested bucket items via a pseudo-random hash-like
function. In contrast to conventional hashing techniques, in
which any change in the number of target bins (devices) re-
sults in a massive reshuffling of bin contents, CRUSH is
based on four different bucket types, each with a different
selection algorithm to address data movement resulting from
the addition or removal of devices and overall computational
complexity.

3.2 Replica Placement

CRUSH is designed to distribute data uniformly among
weighted devices to maintain a statistically balanced utiliza-
tion of storage and device bandwidth resources. The place-
ment of replicas on storage devices in the hierarchy can also
have a critical effect on data safety. By reflecting the un-
derlying physical organization of the installation, CRUSH
can model—and thereby address—potential sources of cor-
related device failures. Typical sources include physical
proximity, a shared power source, and a shared network.
By encoding this information into the cluster map, CRUSH
placement policies can separate object replicas across differ-
ent failure domains while still maintaining the desired distri-
bution. For example, to address the possibility of concurrent
failures, it may be desirable to ensure that data replicas are
on devices in different shelves, racks, power supplies, con-
trollers, and/or physical locations.
In order to accommodate the wide variety of scenarios in

which CRUSH might be used, both in terms of data repli-
cation strategies and underlying hardware configurations,
CRUSH defines placement rules for each replication strat-
egy or distribution policy employed that allow the storage
system or administrator to specify exactly how object repli-
cas are placed. For example, one might have a rule selecting
a pair of targets for 2-way mirroring, one for selecting three
targets in two different data centers for 3-way mirroring, one
for RAID-4 over six storage devices, and so on1.
Each rule consists of a sequence of operations applied to

the hierarchy in a simple execution environment, presented

1Although a wide variety of data redundancy mechanisms are possible,
for simplicity we will refer to the data objects being stored as replicas, with-
out any loss of generality.

Algorithm 1 CRUSH placement for object x
1: procedure TAKE(a) ◃ Put item a in working vector i⃗
2: i⃗← [a]
3: end procedure

4: procedure SELECT(n,t) ◃ Select n items of type t
5: o⃗← /0 ◃ Our output, initially empty
6: for i ∈ i⃗ do ◃ Loop over input i⃗
7: f ← 0 ◃ No failures yet
8: for r← 1,n do ◃ Loop over n replicas
9: fr← 0 ◃ No failures on this replica
10: retry descent← false
11: repeat
12: b← bucket(i) ◃ Start descent at bucket i
13: retry bucket← false
14: repeat
15: if “first n” then ◃ See Section 3.2.2
16: r′ ← r+ f
17: else
18: r′ ← r+ frn
19: end if
20: o← b.c(r′,x) ◃ See Section 3.4
21: if type(o) ̸= t then
22: b← bucket(o) ◃ Continue descent
23: retry bucket← true
24: else if o ∈ o⃗ or failed(o) or overload(o,x)

then
25: fr← fr +1, f ← f +1
26: if o ∈ o⃗ and fr < 3 then
27: retry bucket← true ◃ Retry

collisions locally (see Section 3.2.1)
28: else
29: retry descent← true ◃ Otherwise

retry descent from i
30: end if
31: end if
32: until ¬retry bucket
33: until ¬retry descent
34: o⃗← [⃗o,o] ◃ Add o to output o⃗
35: end for
36: end for
37: i⃗← o⃗ ◃ Copy output back into i⃗
38: end procedure

39: procedure EMIT ◃ Append working vector i⃗ to result
40: R⃗← [R⃗,⃗ i]
41: end procedure

as pseudocode in Algorithm 1. The integer input to the
CRUSH function, x, is typically an object name or other
identifier, such as an identifier for a group of objects whose
replicas will be placed on the same devices. The take(a) op-
eration selects an item (typically a bucket) within the storage
hierarchy and assigns it to the vector i⃗, which serves as an
input to subsequent operations. The select(n,t) operation it-
erates over each element i ∈ i⃗, and chooses n distinct items
of type t in the subtree rooted at that point. Storage devices
have a known, fixed type, and each bucket in the system has a

tomsun

tomsun

Action Resulting i⃗
take(root) root
select(1,row) row2
select(3,cabinet) cab21 cab23 cab24
select(1,disk) disk2107 disk2313 disk2437
emit

Table 1: A simple rule that distributes three replicas
across three cabinets in the same row.

type field that is used to distinguish between classes of buck-
ets (e. g., those representing “rows” and those representing
“cabinets”). For each i ∈ i⃗, the select(n,t) call iterates over
the r ∈ 1, . . . ,n items requested and recursively descends
through any intermediate buckets, pseudo-randomly select-
ing a nested item in each bucket using the function c(r,x)
(defined for each kind of bucket in Section 3.4), until it finds
an item of the requested type t. The resulting n|⃗i| distinct
items are placed back into the input i⃗ and either form the in-
put for a subsequent select(n,t) or are moved into the result
vector with an emit operation.
As an example, the rule defined in Table 1 begins at

the root of the hierarchy in Figure 1 and with the first se-
lect(1,row) chooses a single bucket of type “row” (it selects
row2). The subsequent select(3,cabinet) chooses three dis-
tinct cabinets nested beneath the previously selected row2
(cab21,cab23,cab24), while the final select(1,disk) iterates
over the three cabinet buckets in the input vector and chooses
a single disk nested beneath each of them. The final result
is three disks spread over three cabinets, but all in the same
row. This approach thus allows replicas to be simultaneously
separated across and constrainedwithin container types (e. g.
rows, cabinets, shelves), a useful property for both reliability
and performance considerations. Rules consisting of mul-
tiple take, emit blocks allow storage targets to be explicitly
drawn from different pools of storage, as might be expected
in remote replication scenarios (in which one replica is stored
at a remote site) or tiered installations (e. g., fast, near-line
storage and slower, higher-capacity arrays).

3.2.1 Collisions, Failure, and Overload

The select(n,t) operation may traverse many levels of the
storage hierarchy in order to locate n distinct items of the
specified type t nested beneath its starting point, a recursive
process partially parameterized by r = 1, . . . ,n, the replica
number being chosen. During this process, CRUSH may re-
ject and reselect items using a modified input r′ for three
different reasons: if an item has already been selected in
the current set (a collision—the select(n,t) result must be
distinct), if a device is failed, or if a device is overloaded.
Failed or overloaded devices are marked as such in the clus-
ter map, but left in the hierarchy to avoid unnecessary shift-
ing of data. CRUSH’s selectively diverts a fraction of an

overloaded device’s data by pseudo-randomly rejecting with
the probability specified in the cluster map—typically re-
lated to its reported over-utilization. For failed or overloaded
devices, CRUSH uniformly redistributes items across the
storage cluster by restarting the recursion at the beginning
of the select(n,t) (see Algorithm 1 line 11). In the case of
collisions, an alternate r′ is used first at inner levels of the
recursion to attempt a local search (see Algorithm 1 line 14)
and avoid skewing the overall data distribution away from
subtrees where collisions are more probable (e. g., where
buckets are smaller than n).

3.2.2 Replica Ranks

Parity and erasure coding schemes have slightly different
placement requirements than replication. In primary copy
replication schemes, it is often desirable after a failure for a
previous replica target (that already has a copy of the data) to
become the new primary. In such situations, CRUSH can use
the “first n” suitable targets by reselecting using r′ = r+ f ,
where f is the number of failed placement attempts by the
current select(n,t) (see Algorithm 1 line 16). With parity and
erasure coding schemes, however, the rank or position of a
storage device in the CRUSH output is critical because each
target stores different bits of the data object. In particular,
if a storage device fails, it should be replaced in CRUSH’s
output list R⃗ in place, such that other devices in the list re-
tain the same rank (i. e. position in R⃗, see Figure 2). In
such cases, CRUSH reselects using r′ = r+ frn, where fr is
the number of failed attempts on r, thus defining a sequence
of candidates for each replica rank that are probabilistically
independent of others’ failures. In contrast, RUSH has no
special handling of failed devices; like other existing hash-
ing distribution functions, it implicitly assumes the use of a
“first n” approach to skip over failed devices in the result,
making it unweildly for parity schemes.

3.3 Map Changes and Data Movement

A critical element of data distribution in a large file system is
the response to the addition or removal of storage resources.
CRUSH maintains a uniform distribution of data and work-
load at all times in order to avoid load asymmetries and the
related underutilization of available resources. When an in-
dividual device fails, CRUSH flags the device but leaves it in
the hierarchy, where it will be rejected and its contents uni-
formly redistributed by the placement algorithm (see Sec-
tion 3.2.1). Such cluster map changes result in an optimal
(minimum) fraction, wfailed/W (whereW is the total weight
of all devices), of total data to be remapped to new storage
targets because only data on the failed device is moved.
The situation is more complex when the cluster hierarchy

is modified, as with the addition or removal of storage re-
sources. The CRUSH mapping process, which uses the clus-
ter map as a weighted hierarchical decision tree, can result in
additional data movement beyond the theoretical optimum

choose(1,row)

choose(3,cabinet)

choose(1,disk)
·········

·········
·········

······

·········
·········

······
·········

······
·········

·········
·········

root

row2

row1 row3 row4

cab24cab21

cab22

cab23

Figure 1: A partial view of a four-level cluster map hierarchy consisting of rows, cabinets, and shelves of disks. Bold
lines illustrate items selected by each select operation in the placement rule and fictitious mapping described by Table 1.

a b c d e f

a c d e f g

a b c d e f

a h c d e f

g h

g i j k l

h

…

g i j k lh

… … … … … …

… … … … … …

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

r’ = r + f r’ = r + frn

Figure 2: Reselection behavior of select(6,disk) when de-
vice r = 2 (b) is rejected, where the boxes contain the
CRUSH output R⃗ of n = 6 devices numbered by rank.
The left shows the “first n” approach in which device
ranks of existing devices (c,d,e, f) may shift. On the
right, each rank has a probabilistically independent se-
quence of potential targets; here fr = 1, and r′ = r+ frn=
8 (device h).

of ∆w
W . At each level of the hierarchy, when a shift in rel-

ative subtree weights alters the distribution, some data ob-
jects must move from from subtrees with decreased weight
to those with increased weight. Because the pseudo-random
placement decision at each node in the hierarchy is statisti-
cally independent, data moving into a subtree is uniformly
redistributed beneath that point, and does not necessarily
get remapped to the leaf item ultimately responsible for the
weight change. Only at subsequent (deeper) levels of the
placement process does (often different) data get shifted to
maintain the correct overall relative distributions. This gen-
eral effect is illustrated in the case of a binary hierarchy in
Figure 3.
The amount of data movement in a hierarchy has a lower

bound of ∆w
W , the fraction of data that would reside on a

newly added device with weight ∆w. Data movement in-
creases with the height h of the hierarchy, with a conservative

1X2

1 1

2

4

1 1

2

1 1

2

1 1

Added item

Affected weights
78

34

X

X

Figure 3: Data movement in a binary hierarchy due to a
node addition and the subsequent weight changes.

asymptotic upper bound of h∆wW . The amount of movement
approaches this upper bound when ∆w is small relative toW ,
because data objects moving into a subtree at each step of
the recursion have a very low probability of being mapped to
an item with a small relative weight.

3.4 Bucket Types

Generally speaking, CRUSH is designed to reconcile two
competing goals: efficiency and scalability of the mapping
algorithm, and minimal data migration to restore a balanced
distribution when the cluster changes due to the addition
or removal of devices. To this end, CRUSH defines four
different kinds of buckets to represent internal (non-leaf)
nodes in the cluster hierarchy: uniform buckets, list buck-
ets, tree buckets, and straw buckets. Each bucket type is
based on a different internal data structure and utilizes a dif-
ferent function c(r,x) for pseudo-randomly choosing nested
items during the replica placement process, representing a
different tradeoff between computation and reorganization
efficiency. Uniform buckets are restricted in that they must
contain items that are all of the same weight (much like
a conventional hash-based distribution function), while the
other bucket types can contain a mix of items with any com-
bination of weights. These differences are summarized in

Action Uniform List Tree Straw
Speed O(1) O(n) O(log n) O(n)
Additions poor optimal good optimal
Removals poor poor good optimal

Table 2: Summary of mapping speed and data reorgani-
zation efficiency of different bucket types when items are
added to or removed from a bucket.

Table 2.

3.4.1 Uniform Buckets

Devices are rarely added individually in a large system. In-
stead, new storage is typically deployed in blocks of identical
devices, often as an additional shelf in a server rack or per-
haps an entire cabinet. Devices reaching their end of life are
often similarly decommissioned as a set (individual failures
aside), making it natural to treat them as a unit. CRUSH
uniform buckets are used to represent an identical set of de-
vices in such circumstances. The key advantage in doing so
is performance related: CRUSH can map replicas into uni-
form buckets in constant time. In cases where the uniformity
restrictions are not appropriate, other bucket types can be
used.
Given a CRUSH input value of x and a replica number r,

we choose an item from a uniform bucket of size m using the
function c(r,x) = (hash(x)+ rp) modm, where p is a ran-
domly (but deterministically) chosen prime number greater
than m. For any r ≤ m we can show that we will always
select a distinct item using a few simple number theory lem-
mas.2 For r > m this guarantee no longer holds, meaning
two different replicas r with the same input x may resolve to
the same item. In practice, this means nothing more than a
non-zero probability of collisions and subsequent backtrack-
ing by the placement algorithm (see Section 3.2.1).
If the size of a uniform bucket changes, there is a complete

reshuffling of data between devices, much like conventional
hash-based distribution strategies.

3.4.2 List Buckets

List buckets structure their contents as a linked list, and can
contain items with arbitrary weights. To place a replica,
CRUSH begins at the head of the list with the most re-
cently added item and compares its weight to the sum of
all remaining items’ weights. Depending on the value of
hash(x,r, item), either the current item is chosen with the
appropriate probability, or the process continues recursively
down the list. This approach, derived from RUSHP, recasts
the placement question into that of “most recently added

2The Prime Number Theorem for Arithmetic Progressions [Granville
1993] can be used to further show that this function will distribute repli-
cas of object x in mφ(m) different arrangements, and that each arrangement
is equally likely. φ(·) is the Euler Totient function.

1 11

10

100

1000

101 111

110

1001 1011

1010

1100

1111

1110

Figure 4: Node labeling strategy used for the binary tree
comprising each tree bucket.

item, or older items?” This is a natural and intuitive choice
for an expanding cluster: either an object is relocated to the
newest device with some appropriate probability, or it re-
mains on the older devices as before. The result is optimal
data migration when items are added to the bucket. Items re-
moved from the middle or tail of the list, however, can result
in a significant amount of unnecessary movement, making
list buckets most suitable for circumstances in which they
never (or very rarely) shrink.
The RUSHP algorithm is approximately equivalent to a

two-level CRUSH hierarchy consisting of a single list bucket
containing many uniform buckets. Its fixed cluster repre-
sentation precludes the use for placement rules or CRUSH
failure domains for controlling data placement for enhanced
reliability.

3.4.3 Tree Buckets

Like any linked list data structure, list buckets are efficient
for small sets of items but may not be appropriate for large
sets, where their O(n) running time may be excessive. Tree
buckets, derived from RUSHT , address this problem by stor-
ing their items in a binary tree. This reduces the placement
time to O(logn), making them suitable for managing much
larger sets of devices or nested buckets. RUSHT is equiva-
lent to a two-level CRUSH hierarchy consisting of a single
tree bucket containing many uniform buckets.
Tree buckets are structured as a weighted binary search

tree with items at the leaves. Each interior node knows the
total weight of its left and right subtrees and is labeled ac-
cording to a fixed strategy (described below). In order to
select an item within a bucket, CRUSH starts at the root of
the tree and calculates the hash of the input key x, replica
number r, the bucket identifier, and the label at the current
tree node (initially the root). The result is compared to the
weight ratio of the left and right subtrees to decide which
child node to visit next. This process is repeated until a leaf
node is reached, at which point the associated item in the
bucket is chosen. Only logn hashes and node comparisons
are needed to locate an item.
The bucket’s binary tree nodes are labeled with binary val-

ues using a simple, fixed strategy designed to avoid label
changes when the tree grows or shrinks. The leftmost leaf
in the tree is always labeled “1.” Each time the tree is ex-
panded, the old root becomes the new root’s left child, and

the new root node is labeled with the old root’s label shifted
one bit to the left (1, 10, 100, etc.). The labels for the right
side of the tree mirror those on the left side except with a
“1” prepended to each value. A labeled binary tree with six
leaves is shown in Figure 4. This strategy ensures that as new
items are added to (or removed from) the bucket and the tree
grows (or shrinks), the path taken through the binary tree for
any existing leaf item only changes by adding (or removing)
additional nodes at the root, at the beginning of the place-
ment decision tree. Once an object is placed in a particular
subtree, its final mapping will depend only on the weights
and node labels within that subtree and will not change as
long as that subtree’s items remain fixed. Although the hi-
erarchical decision tree introduces some additional data mi-
gration between nested items, this strategy keeps movement
to a reasonable level, while offering efficient mapping even
for very large buckets.

3.4.4 Straw Buckets

List and tree buckets are structured such that a limited num-
ber of hash values need to be calculated and compared to
weights in order to select a bucket item. In doing so, they
divide and conquer in a way that either gives certain items
precedence (e. g., those at the beginning of a list) or obviates
the need to consider entire subtrees of items at all. That im-
proves the performance of the replica placement process, but
can also introduce suboptimal reorganization behavior when
the contents of a bucket change due an addition, removal, or
re-weighting of an item.
The straw bucket type allows all items to fairly “compete”

against each other for replica placement through a process
analogous to a draw of straws. To place a replica, a straw
of random length is drawn for each item in the bucket. The
item with the longest straw wins. The length of each straw
is initially a value in a fixed range, based on a hash of the
CRUSH input x, replica number r, and bucket item i. Each
straw length is scaled by a factor f (wi) based on the item’s
weight3 so that heavily weighted items are more likely to win
the draw, i. e. c(r,x) = maxi (f (wi)hash(x,r, i)). Although
this process is almost twice as slow (on average) than a list
bucket and even slower than a tree bucket (which scales log-
arithmically), straw buckets result in optimal data movement
between nested items when modified.
The choice of bucket type can be guided based on ex-

pected cluster growth patterns to trade mapping function
computation for data movement efficiency where it is appro-
priate to do so. When buckets are expected to be fixed (e. g.,
a shelf of identical disks), uniform buckets are fastest. If a
bucket is only expected to expand, list buckets provide op-
timal data movement when new items are added at the head
of the list. This allows CRUSH to divert exactly as much

3Although a simple closed form for f (wi) is not known, it is relatively
straightforward to calculate the weight factors procedurally (source code is
available). This calculation need only be performed each time the bucket is
modified.

data to the new device as is appropriate, without any shuf-
fle between other bucket items. The downside is O(n) map-
ping speed and extra data movement when older items are
removed or reweighted. In circumstances where removal is
expected and reorganization efficiency is critical (e. g., near
the root of the storage hierarchy), straw buckets provide op-
timal migration behavior between subtrees. Tree buckets are
an all around compromise, providing excellent performance
and decent reorganization efficiency.

4 Evaluation

CRUSH is based on a wide variety of design goals includ-
ing a balanced, weighted distribution among heterogeneous
storage devices, minimal data movement due to the addition
or removal of storage (including individual disk failures),
improved system reliability through the separation of repli-
cas across failure domains, and a flexible cluster descrip-
tion and rule system for describing available storage and
distributing data. We evaluate each of these behaviors un-
der expected CRUSH configurations relative to RUSHP- and
RUSHT -style clusters by simulating the allocation of objects
to devices and examining the resulting distribution. RUSHP
and RUSHT are generalized by a two-level CRUSH hierar-
chy with a single list or tree bucket (respectively) containing
many uniform buckets. Although RUSH’s fixed cluster rep-
resentation precludes the use of placement rules or the sep-
aration of replicas across failure domains (which CRUSH
uses to improve data safety), we consider its performance
and data migration behavior.

4.1 Data Distribution

CRUSH’s data distribution should appear random—
uncorrelated to object identifiers x or storage targets—and
result in a balanced distribution across devices with equal
weight. We empirically measured the distribution of objects
across devices contained in a variety of bucket types and
compared the variance in device utilization to the binomial
probability distribution, the theoretical behavior we would
expect from a perfectly uniform random process. When dis-
tributing n objects with probability pi = wi

W of placing each
object on a given device i, the expected device utilization
predicted by the corresponding binomial b(n, p) is µ = np
with a standard deviation of σ =

√

np(1− p). In a large sys-
tem with many devices, we can approximate 1− p≃ 1 such
that the standard deviation is σ ≃ √µ—that is, utilizations
are most even when the number of data objects is large.4 As
expected, we found that the CRUSH distribution consistently
matched the mean and variance of a binomial for both homo-
geneous clusters and clusters with mixed device weights.

4The binomial distribution is approximately Gaussian when there are
many objects (i. e. when n is large).

4.1.1 Overload Protection

Although CRUSH achieves good balancing (a low variance
in device utilization) for large numbers of objects, as in any
stochastic process this translates into a non-zero probabil-
ity that the allocation on any particular device will be sig-
nificantly larger than the mean. Unlike existing probabilis-
tic mapping algorithms (including RUSH), CRUSH includes
a per-device overload correction mechanism that can redis-
tribute any fraction of a device’s data. This can be used
to scale back a device’s allocation proportional to its over-
utilization when it is in danger of overfilling, selectively
“leveling off” overfilled devices. When distributing data
over a 1000-device cluster at 99% capacity, we found that
CRUSH mapping execution times increase by less than 20%
despite overload adjustments on 47% of the devices, and that
the variance decreased by a factor of four (as expected).

4.1.2 Variance and Partial Failure

Prior research [Santos et al. 2000] has shown that random-
ized data distribution offers real-world system performance
comparable to (but slightly slower than) that of careful data
striping. In our own performance tests of CRUSH as part of
a distributed object-based storage system [?], we found that
randomizing object placement resulted in an approximately
5% penalty in write performance due to variance in the OSD
workloads, related in turn to the level of variation in OSD
utilizations. In practice, however, such variance is primarily
only relevant for homogeneous workloads (usually writes)
where a careful striping strategy is effective. More often,
workloads are mixed and already appear random when they
reach the disk (or at least uncorrelated to on-disk layout),
resulting in a similar variance in device workloads and per-
formance (despite careful layout), and similarly reduced ag-
gregate throughput. We find that CRUSH’s lack of metadata
and robust distribution in the face of any potential workload
far outweigh the small performance penalty under a small set
of workloads.
This analysis assumes that device capabilities are more

or less static over time. Experience with real systems sug-
gests, however, that performance in distributed storage sys-
tems is often dragged down by a small number of slow, over-
loaded, fragmented, or otherwise poorly performing devices.
Traditional, explicit allocation schemes can manually avoid
such problem devices, while hash-like distribution functions
typically cannot. CRUSH allows degenerate devices to be
treated as a “partial failure” using the existing overload cor-
rection mechanism, diverting an appropriate amount of data
and workload to avoiding such performance bottlenecks and
correct workload imbalance over time.
Fine-grained load balancing by the storage system can fur-

ther mitigate device workload variance by distributing the
read workload over data replicas, as demonstrated by the D-
SPTF algorithm [Lumb et al. 2004]; such approaches, al-
though complementary, fall outside the scope of the CRUSH

M
ov

em
en

t F
ac

to
r

0

1

2

3

4

5

6

OSDs added or removed
10 30 90 270 810 2430 7290

CRUSH, tree bucket
CRUSH, list bucket addition
CRUSH, list bucket removal
CRUSH, straw bucket
RUSH_T
RUSH_P addition
RUSH_P removal

Figure 5: Efficiency of reorganization after adding or re-
moving storage devices two levels deep into a four level,
7290 device CRUSH cluster hierarchy, versus RUSHP
and RUSHT . 1 is optimal.

mapping function and this paper.

4.2 Reorganization and Data Movement

We evaluate the data movement caused by the addition or re-
moval of storage when using both CRUSH and RUSH on a
cluster of 7290 devices. The CRUSH clusters are four lev-
els deep: nine rows of nine cabinets of nine shelves of ten
storage devices, for a total of 7290 devices. RUSHT and
RUSHP are equivalent to a two-level CRUSH map consist-
ing of a single tree or list bucket (respectively) containing
729 uniform buckets with 10 devices each. The results are
compared to the theoretically optimal amount of movement
moptimal =

∆w
W , where ∆w is the combined weight of the stor-

age devices added or removed and W is the total weight of
the system. Doubling system capacity, for instance, would
require exactly half of the existing data to move to new de-
vices under an optimal reorganization.
Figure 5 shows the relative reorganization efficiency in

terms of the movement factor mactual/moptimal , where 1 rep-
resents an optimal number of objects moved and larger val-
ues mean additional movement. The X axis is the number of
OSDs added or removed and the Y axis is the movement fac-
tor plotted on a log scale. In all cases, larger weight changes
(relative to the total system) result in a more efficient reorga-
nization. RUSHP (a single, large list bucket) dominated the
extremes, with the least movement (optimal) for additions
and most movement for removals (at a heavy performance
penalty, see Section 4.3 below). A CRUSH multi-level hi-
erarchy of list (for additions only) or straw buckets had the
next least movement. CRUSH with tree buckets was slightly
less efficient, but did almost 25% better than plain RUSHT
(due to the slightly imbalanced 9-item binary trees in each
tree bucket). Removals from a CRUSH hierarchy built with
list buckets did poorly, as expected (see Section 3.3).
Figure 6 shows the reorganization efficiency of different

bucket types (in isolation) when nested items are added or

M
ov

em
en

t F
ac

to
r

1

2

4

8

16

32

64

Original Bucket Size
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

tree bucket
list bucket head
list bucket tail
uniform bucket
straw bucket

Figure 6: Efficiency of reorganization after adding items
to different bucket types. 1 is optimal. Straw and list
buckets are normally optimal, although removing items
from the tail of a list bucket induces worst case behavior.
Tree bucket changes are bounded by the logarithm of the
bucket size.

removed. The movement factor in a modified tree bucket is
bounded by logn, the depth of its binary tree. Adding items
to straw and list buckets is approximately optimal. Uni-
form bucket modifications result in a total reshuffle of data.
Modifications to the tail of a list (e. g., removal of the old-
est storage) similarly induce data movement proportional to
the bucket size. Despite certain limitations, list buckets may
be appropriate in places within an overall storage hierarchy
where removals are rare and at a scale where the performance
impact will be minimal. A hybrid approach combining uni-
form, list, tree, and straw buckets can minimize data move-
ment under the most common reorganization scenarios while
still maintaining good mapping performance.

4.3 Algorithm Performance

Calculating a CRUSH mapping is designed to be fast—
O(logn) for a cluster with n OSDs—so that devices can
quickly locate any object or reevaluate the proper storage
targets for the objects that they already store after a cluster
map change. We examine CRUSH’s performance relative to
RUSHP and RUSHT over a million mappings into clusters
of different sizes. Figure 7 shows the average time (in mi-
croseconds) to map a set of replicas into a CRUSH cluster
composed entirely of 8-item tree and uniform buckets (the
depth of the hierarchy is varied) versus RUSH’s fixed two-
level hierarchy. The X axis is the number of devices in the
system, and is plotted on a log scale such that it corresponds
to the depth of the storage hierarchy. CRUSH performance is
logarithmic with respect to the number of devices. RUSHT
edges out CRUSH with tree buckets due to slightly simpler
code complexity, followed closely by list and straw buck-
ets. RUSHP scales linearly in this test (taking more than 25

Ti
m

e
(m

ic
ro

se
co

nd
s)

0

5

10

15

20

25

30

Cluster Size (OSDs)
64 512 4096 32768

CRUSH, tree bucket
CRUSH, list bucket
CRUSH, straw bucket
RUSH_T
RUSH_P

Figure 7: CRUSH and RUSHT computation times scale
logarithmically relative to hierarchy size, while RUSHP
scales linearly.

Ti
m

e
(m

ic
ro

se
co

nd
s)

0
1
2
3
4
5
6
7
8
9

10

Bucket Size (items)
0 5 10 15 20 25 30 35 40

uniform O(1)
tree O(log n)
list O(n)
straw O(n)

Figure 8: Low-level speed of mapping replicas into in-
dividual CRUSH buckets versus bucket size. Uniform
buckets take constant time, tree buckets take logarithmic
time, and list and straw buckets take linear time.

times longer than CRUSH for 32768 devices), although in
practical situations where the size of newly deployed disks
increases exponentially over time one can expect slightly im-
proved sub-linear scaling [Honicky and Miller 2004]. These
tests were conducted with a 2.8GHz Pentium 4, with overall
mapping times in the tens of microseconds.
The efficiency of CRUSH depends upon the depth of the

storage hierarchy and on the types of buckets from which it
is built. Figure 8 compares the time (Y) required for c(r,x) to
select a single replica from each bucket type as a function of
the size of the bucket (X). At a high level, CRUSH scales as
O(logn)—linearly with the hierarchy depth—provided indi-
vidual buckets that may be O(n) (list and straw buckets scale
linearly) do not exceed a fixed maximum size. When and
where individual bucket types should be used depends on the
expected number of additions, removals, or re-weightings.
List buckets offer a slight performance advantage over straw
buckets, although when removals are possible one can ex-

pect excessive data shuffling. Tree buckets are a good choice
for very large or commonly modified buckets, with decent
computation and reorganization costs.
Central to CRUSH’s performance—both the execution

time and the quality of the results—is the integer hash func-
tion used. Pseudo-random values are calculated using a mul-
tiple input integer hash function based on Jenkin’s 32-bit
hash mix [Jenkins 1997]. In its present form, approximately
45% of the time spent in the CRUSH mapping function is
spent hashing values, making the hash key to both overall
speed and distribution quality and a ripe target for optimiza-
tion.

4.3.1 Negligent Aging

CRUSH leaves failed devices in place in the storage hierar-
chy both because failure is typically a temporary condition
(failed disks are usually replaced) and because it avoids in-
efficient data reorganization. If a storage system ages in ne-
glect, the number of devices that are failed but not replaced
may become significant. Although CRUSH will redistribute
data to non-failed devices, it does so at a small performance
penalty due to a higher probability of backtracking in the
placement algorithm. We evaluated the mapping speed for a
1,000 device cluster while varying the percentage of devices
marked as failed. For the relatively extreme failure scenario
in which half of all devices are dead, the mapping calcula-
tion time increases by 71%. (Such a situation would likely be
overshadowed by heavily degraded I/O performance as each
devices’ workload doubles.)

4.4 Reliability

Data safety is of critical importance in large storage systems,
where the large number of devices makes hardware failure
the rule rather than the exception. Randomized distribution
strategies like CRUSH that decluster replication are of par-
ticular interest because they expand the number of peers with
which any given device shares data. This has two competing
and (generally speaking) opposing effects. First, recovery
after a failure can proceed in parallel because smaller bits of
replicated data are spread across a larger set of peers, reduc-
ing recovery times and shrinking the window of vulnerability
to additional failures. Second, a larger peer group means an
increased probability of a coincident second failure losing
shared data. With 2-way mirroring these two factors cancel
each other out, while overall data safety with more than two
replicas increases with declustering [Xin et al. 2004].
However, a critical issue with multiple failures is that,

in general, one cannot expect them to be independent—in
many cases a single event like a power failure or a physi-
cal disturbance will affect multiple devices, and the larger
peer groups associated with declustered replication greatly
increase the risk of data loss. CRUSH’s separation of repli-
cas across user-defined failure domains (which does not ex-
ist with RUSH or existing hash-based schemes) is specifi-

cally designed to prevent concurrent, correlated failures from
causing data loss. Although it is clear that the risk is reduced,
it is difficult to quantify the magnitude of the improvement in
overall system reliability in the absence of a specific storage
cluster configuration and associated historical failure data to
study. Although we hope to perform such a study in the fu-
ture, it is beyond the scope of this paper.

5 Future Work

CRUSH is being developed as part of Ceph, a multi-petabyte
distributed file system [?]. Current research includes an in-
telligent and reliable distributed object store based largely on
the unique features of CRUSH. The primitive rule structure
currently used by CRUSH is just complex enough to support
the data distribution policies we currently envision. Some
systems will have specific needs that can be met with a more
powerful rule structure.
Although data safety concerns related to coincident fail-

ures were the primary motivation for designing CRUSH,
study of real system failures is needed to determine their
character and frequency before Markov or other quantitative
models can used to evaluate their precise effect on a system’s
mean time to data loss (MTTDL).
CRUSH’s performance is highly dependent on a suitably

strong multi-input integer hash function. Because it simul-
taneously affects both algorithmic correctness—the qual-
ity of the resulting distribution—and speed, investigation
into faster hashing techniques that are sufficiently strong for
CRUSH is warranted.

6 Conclusions

Distributed storage systems present a distinct set of scala-
bility challenges for data placement. CRUSH meets these
challenges by casting data placement as a pseudo-random
mapping function, eliminating the conventional need for al-
location metadata and instead distributing data based on a
weighted hierarchy describing available storage. The struc-
ture of the cluster map hierarchy can reflect the underlying
physical organization and infrastructure of an installation,
such as the composition of storage devices into shelves, cab-
inets, and rows in a data center, enabling custom placement
rules that define a broad class of policies to separate object
replicas into different user-defined failure domains (with,
say, independent power and network infrastructure). In do-
ing so, CRUSH can mitigate the vulnerability to correlated
device failures typical of existing pseudo-random systems
with declustered replication. CRUSH also addresses the risk
of device overfilling inherent in stochastic approaches by se-
lectively diverting data from overfilled devices, with minimal
computational cost.
CRUSH accomplishes all of this in an exceedingly ef-

ficient fashion, both in terms of the computational effi-

ciency and the required metadata. Mapping calculations
have O(logn) running time, requiring only tens of microsec-
onds to execute with thousands of devices. This robust
combination of efficiency, reliability and flexibility makes
CRUSH an appealing choice for large-scale distributed stor-
age systems.

7 Acknowledgements

R. J. Honicky’s excellent work on RUSH inspired the de-
velopment of CRUSH. Discussions with Richard Golding,
Theodore Wong, and the students and faculty of the Storage
Systems Research Center were most helpful in motivating
and refining the algorithm. This work was supported in part
by Lawrence Livermore National Laboratory, Los Alamos
National Laboratory, and Sandia National Laboratory under
contract B520714. Sage Weil was supported in part by a
fellowship from Lawrence Livermore National Laboratory.
We would also like to thank the industrial sponsors of the
SSRC, including Hewlett Packard Laboratories, IBM, Intel,
Microsoft Research, Network Appliance, Onstor, Rocksoft,
Symantec, and Yahoo.

8 Availability

The CRUSH source code is licensed under the LGPL, and is
available at:
http://www.cs.ucsc.edu/~sage/crush

References

ANDERSON, E., HALL, J., HARTLINE, J., HOBBS, M.,
KARLIN, A. R., SAIA, J., SWAMINATHAN, R., AND
WILKES, J. 2001. An experimental study of data mi-
gration algorithms. In Proceedings of the 5th Inter-
national Workshop on Algorithm Engineering, Springer-
Verlag, London, UK, 145–158.

ANDERSON, E., HOBBS, M., KEETON, K., SPENCE, S.,
UYSAL, M., AND VEITCH, A. 2002. Hippodrome: run-
ning circles around storage administration. In Proceedings
of the 2002 Conference on File and Storage Technologies
(FAST).

AZAGURY, A., DREIZIN, V., FACTOR, M., HENIS, E.,
NAOR, D., RINETZKY, N., RODEH, O., SATRAN, J.,
TAVORY, A., AND YERUSHALMI, L. 2003. Towards
an object store. In Proceedings of the 20th IEEE / 11th
NASA Goddard Conference on Mass Storage Systems and
Technologies, 165–176.

BRAAM, P. J. 2004. The Lustre storage architec-
ture. http://www.lustre.org/documentation.html, Cluster
File Systems, Inc., Aug.

BRINKMANN, A., SALZWEDEL, K., AND SCHEIDELER,
C. 2000. Efficient, distributed data placement strategies
for storage area networks. In Proceedings of the 12th
ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA), ACM Press, 119–128. Extended Abstract.

CHOY, D. M., FAGIN, R., AND STOCKMEYER, L. 1996.
Efficiently extendible mappings for balanced data distri-
bution. Algorithmica 16, 215–232.

GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. 2003.
The Google file system. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP ’03),
ACM.

GOBIOFF, H., GIBSON, G., AND TYGAR, D. 1997. Secu-
rity for network attached storage devices. Tech. Rep. TR
CMU-CS-97-185, Carniege Mellon, Oct.

GOEL, A., SHAHABI, C., YAO, D. S.-Y., AND ZIMMER-
MAN, R. 2002. SCADDAR: An efficient randomized
technique to reorganize continuous media blocks. In Pro-
ceedings of the 18th InternationalConference on Data En-
gineering (ICDE ’02), 473–482.

GRANVILLE, A. 1993. On elementary proofs of the Prime
Number Theorem for Arithmetic Progressions, without
characters. In Proceedings of the 1993 Amalfi Conference
on Analytic Number Theory, 157–194.

HONICKY, R. J., AND MILLER, E. L. 2004. Replication un-
der scalable hashing: A family of algorithms for scalable
decentralized data distribution. In Proceedings of the 18th
International Parallel & Distributed Processing Sympo-
sium (IPDPS 2004), IEEE.

JENKINS, R. J., 1997. Hash functions for hash table lookup.
http://burtleburtle.net/bob/hash/evahash.html.

KARGER, D., LEHMAN, E., LEIGHTON, T., LEVINE, M.,
LEWIN, D., AND PANIGRAHY, R. 1997. Consistent hash-
ing and random trees: Distributed caching protocols for
relieving hot spots on the World Wide Web. In ACM Sym-
posium on Theory of Computing, 654–663.

LUMB, C. R., GANGER, G. R., AND GOLDING, R. 2004.
D-SPTF: Decentralized request distribution in brick-based
storage systems. In Proceedings of the 11th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 37–47.

NAGLE, D., SERENYI, D., AND MATTHEWS, A. 2004.
The Panasas ActiveScale storage cluster—delivering scal-
able high bandwidth storage. In Proceedings of the 2004
ACM/IEEE Conference on Supercomputing (SC ’04).

RODEH, O., AND TEPERMAN, A. 2003. zFS—a scalable
distributed file system using object disks. In Proceedings
of the 20th IEEE / 11th NASA Goddard Conference on
Mass Storage Systems and Technologies, 207–218.

SAITO, Y., FRØLUND, S., VEITCH, A., MERCHANT, A.,
AND SPENCE, S. 2004. FAB: Building distributed en-
terprise disk arrays from commodity components. In Pro-
ceedings of the 11th International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems (ASPLOS), 48–58.

SANTOS, J. R., MUNTZ, R. R., AND RIBEIRO-NETO, B.
2000. Comparing random data allocation and data striping
in multimedia servers. In Proceedings of the 2000 SIG-
METRICS Conference on Measurement and Modeling of
Computer Systems, ACM Press, Santa Clara, CA, 44–55.

SCHMUCK, F., AND HASKIN, R. 2002. GPFS: A shared-
disk file system for large computing clusters. In Proceed-
ings of the 2002 Conference on File and Storage Technolo-
gies (FAST), USENIX, 231–244.

TANG, H., GULBEDEN, A., ZHOU, J., STRATHEARN, W.,
YANG, T., AND CHU, L. 2004. A self-organizing stor-
age cluster for parallel data-intensive applications. In Pro-
ceedings of the 2004 ACM/IEEE Conference on Super-
computing (SC ’04).

XIN, Q., MILLER, E. L., AND SCHWARZ, T. J. E. 2004.
Evaluation of distributed recovery in large-scale storage
systems. In Proceedings of the 13th IEEE International
Symposium on High Performance Distributed Computing
(HPDC), 172–181.

